

Exercice 3 (7 points)**Thème : Géométrie dans l'espace**

L'espace est muni d'un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$

On considère les points $A(3; -2; 2)$, $B(6; 1; 5)$, $C(6; -2; -1)$ et $D(0; 4; -1)$.

On rappelle que le volume d'un tétraèdre est donné par la formule :

$$V = \frac{1}{3} \mathcal{A} \times h$$

où \mathcal{A} est l'aire de la base et h la hauteur correspondante.

- 1- Démontrer que les points A, B, C et D ne sont pas coplanaires.
- 2- a. Montrer que le triangle ABC est rectangle.
b. Montrer que la droite (AD) est perpendiculaire au plan (ABC) .
c. En déduire le volume du tétraèdre $ABCD$.
- 3- On considère le point $H(5; 0; 1)$.
 - a. Montrer qu'il existe des réels α et β tels que $\vec{BH} = \alpha \vec{BC} + \beta \vec{BD}$.
 - b. Démontrer que H est le projeté orthogonal du point A sur le plan (BCD) .
c. En déduire la distance du point A au plan (BCD) .
- 4- Déduire des questions précédentes l'aire du triangle BCD .